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Agenda 

Software Requirement Specification  

State Chart in embedded software analysis and 
design 

Time requirement analysis for real-time systems 

Quiz 
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Overview 

• The embedded system software development has 
same Software Development Life Cycle (SDLC) just like 
any other software development plus its special 
consideration in the resource constrains including  
• CPU, time, memory, operating system, multi-tasking 

concurrency, and many other non-functional attribute 
constraints.  

• In order to reduce the time-to-market and guarantee 
the reliability of the embedded system products, 
software engineering methodology is recommended 
for the software design and development.  

• Because the embedded software is not deployed on a 
general-purpose computer system, the embedded 
software in C/C++ or other high level programming 
languages  must be developed and tested on a cross-
platform machine such as PC, and then be loaded to a 
target microcontroller memory to be tested. 
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Embedded system co-design 

• In co-design phase, software analyst/designer need to work with hardware 
team members to decide on the type of microcontrollers and 
microprocessors according to the requirement of the speed and memory, 
power consumption, the number of I/O devices such as ADC, cost per unit, 
size and packaging, and others. 

 

4 

E
m

be
d
d
ed

 S
ys

. 
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7 

  ©
 A

hm
ad

 E
l-B

an
na

 



SDLC 

• The SDLC proceeds in phases consisting of system 
specification, analysis, design, coding, and testing.   

• The dash-lines indicate the required iteration processes 
when the changes are needed. 
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Software Requirement Specification  

• Compared to general purpose software the non-
functional requirement are especially important to all 
embedded software due to various constraints in 
resources and performance.  

• All the quality attributes should be identified in the 
requirement analysis process.  

• Quality attributes can be categorized into three 
groups: 
1. Implementation attributes (not observable at 

runtime) 
2. Runtime attributes (observable at runtime)  
3. Business attributes 
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1. Implementation attributes  
(not observable at runtime) 

 Resource availability: This refers to memory space, 
power supplier, CPU frequency, and RTOS.  

 Maintainability & extensibility: This refers to the 
ability to modify the system and extend it 
conveniently.  

 Testability: This refers to the degree to which the 
system facilitates the establishment of test cases. It 
usually requires a complete set of documentation 
accompanied with system design and implementation. 

 Flexibility: This refers to the ease of modification of a 
system to cater to different environment or problems 
for which the system is originally not designed.  
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2. Runtime attributes  
(observable at runtime)  

 Availability: This refers to the ability of a system to be 
available 24x7. Availability can be achieved via 
replication and careful design to cope with failures of 
hardware, software, or the network 

 Security: This refers to the ability to cope with 
malicious attacks from outside or inside of the system. 
Security can be improved by installing firewalls and 
establishing authentication and authorization 
processes, and using encryption. 

 Performance: This refers to increasing efficiency such 
as response time, throughput and generally resource 
utilization, which most of the time conflict with each 
other. 8 
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Contd. 

 Usability: This refers to the level of “satisfaction” from 
a human perspective in using the system.  Usability 
includes completeness, correctness, compatibility, and 
user friendliness such as friendly user interface, 
complete documentation, and help support. 

 Reliability: This refers to the failure frequency, the 
accuracy of output results, the mean-time-to-failure 
(MTTF), the ability to recover from failure, and the 
failure predictability   
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3. Business attributes 

 Time to market: This refers to the time it takes 
from requirement analysis to the date product is 
released. 

 Cost: This refers to expense of building, 
maintaining, and operating the system.  

 Lifetime: This refers to the period of time that the 
product is “alive” before retirement. 
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Embedded Software  
Modeling Analysis and Design 

 Context Diagram  
 The analysis process starts with the system context 

analysis, system key tasks, and their relationship 
identification.  

 The focus is given to the reactive behaviors of the 
embedded software.  

 The event behavior features include: periodic or 
aperiodic events, parallel or serial data processing, 
synchronous or asynchronous communication, real-
time or soft-time in response reaction, and others.   

 Based on the system modeling the design process 
produces an implementation guideline for 
developers such as multi-tasking processing 
architecture. 
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Contd. 

 The context diagram generation may be the first 
step in the embedded software modeling process.  

 The context diagram is derived from the requirement 
specification.  

 It provides a preliminary draft of the embedded software 
and its environment which shows all events the system 
interacts with. 

 It specifies elements of a system, data and data flow 
around the system, and the system internal and external 
communication.  
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Example: 
Multiple room temperature control system specification. 

• The system provides centralized and distributed 
temperature control functions.  

• A local desired temperature can be set by a room control 
panel in each individual room or a global temperature can 
be set at the central control panel.  

• The temperature sensors are installed in each room to 
monitor the current room temperature.  

• The A/C and furnace are turned on or off by the controller 
depending on the desired temperature and the current 
temperature.  

• Each room has a vent driven by a motor to control the air 
flow so that different rooms may reach different desired 
temperatures. 
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Finite State Machine (FSM) and 
StateChart 

• The system modeling presents an abstraction of 
system (a high level description) in software aspects 
which helps understanding of the functional 
requirement in block diagram and helps to identify all 
required software elements and tasks.  

• There are many modeling tools available for modeling 
the behaviors of embedded system software such as 
Universal Modeling Language (UML) and Petri Net.   

• The stateChart diagram is  a very popular analysis 
modeling method for real time embedded software 
which is derived from Finite State Machine (FSM). 
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State name

Entry/activity

Do/activity

Exit/activity

State 

• A FSM consists of a finite number of states, transitions 
between the states, and actions to be performed.  

• A state represents a certain behavior which lasts for a 
period of time in performing tasks or being idle waiting 
for events . 

• In the state notation where you can specify the 
entrance actions, state actions, and exit actions 
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Event(attributes)[guide condition]/reaction

Transition 

• A transition indicates a state change guided by condition or 
events.  

• A transition is a response to an event with a set of attributes 
that moves the system from one state to another state.  

• There may be many transition links from one state to other 
states with different events or with same event but 
different guide conditions.  

•  An event can refer to either internal event(such as timer 
timeout overflow) or external event (a car detected by 
sensor), a  condition can refer to a set of variable values and 
a reaction can refer to reassignment of these variables or 
new event creation.  
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Example: 
glucose monitor System functional requirements  

• When the test strip is inserted into the monitor the 
system moves to a ready state waiting for the blood 
sample and the system moves back to the idle state 
when the strip is removed.  

• At this time patient can set the strip code in two digits 
and it is saved in the data  store. If the blood is not 
enough it displays the error message is displayed in the 
display state and system goes back to the ready state 
to wait for new blood sample.  

• If the blood sample is valid it moves to the 
computation state to analyze the glucose level with 
the code reference from the data store and report the 
result.  
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Sketch the FSM of this system! 



Simplified FSM diagram for  
glucose monitor 
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Simple FSM Implementation 

init state S0; 
while(1) 
{ 
switch(state) 
  {  S0: action0; 
             if (cond1) state = S1; 
             else (cond2) state = . . .; 
             break; 
     S1:   action1; 
             if (cond3) state= . . . ; 
             else if (cond4) state = . . . ; 
             else state = S0; 
             break; 
     S2:   action2; 
             If (...) ...  
   } 
} 
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Flat FSM 

• FSM can’t represent multiple states active simultaneously and it 
can’t describe any nested states within states in a hierarchical 
structure neither.  

• It can only be used for simple system with few states. 

•  A simple flat FSM for a counter or validation task, where s1-s4 
take inputs and validate input, if the input are not valid then the 
system moves to state S5 to handle exception, and then goes 
back to initial state to start over again.  

• It will be too complicated if the number of states goes large.   
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s1 s2 s3 s4

S’

S5

s u

S

Nested State Chart 

• This figure groups these state to make a nested state S’ so 
that the transition between S’ and S is greatly simplified.  

• In this way a state can be refined into a set of sub-states 
until each state is simple enough to have its sole 
responsibility.  
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 A simple State Chart 
with concurrent tasks 

• The figure demonstrates two concurrent tasks that are active at same 
time. 

• Two tasks can be running concurrently with links between them.  

• The dash links indicate the synchronization and message pass 
communication between tasks such that one task can notify another 
task by a signal of job completion or other events.  

• There may also be an external event notification such as interrupt 
request from any external event resource.  
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Hierarchy and Concurrency in StateChart 
  

A

B
C

F

G
D E

A

B C

D E F G

AND

AND

OR
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• More complicated logical relationships can be represented by the 
combinations of logic AND (concurrency) and logic OR 
(selection) in a stateChart.  

•state A is a super state  
•states B , C are nested in state A.  



History state 

• A concurrent state can contain one history state and one 
deep history state. 

•  A transition to the history state will resumes the state it last 
had in this state region.  

• A typical application of the history state is for the Interrupt 
Service Routine(ISR) return, which returns the control to 
where it left. 

•  A history state can have multiple incoming events/actions.  
• It can have at most one outgoing events/actions, which 

points to the “resume” state  if the transition occurs for the 
first time without any history.  

• The regular history state only applies to the level in which it 
appears while the deep history state entrance applies to the 
most recently visited state in the deepest level. 

•  It is noted as H*. 
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• After completion of interrupts the control will return 
to where it left as noted by the H states.  

• E.g., a timer can trigger a timeout event which 
interrupts a task, then an ISR handle the event, and 
the interrupted task resumes afterwards. 26 
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FSM v.s. State chart 

• The FSM is good for control oriented system 
analysis which monitors inputs, controls the 
transitions by stimulus/events, and takes actions 
on the states.  

• The stateChart is multi-tasking oriented which 
overcomes these shortcoming to support the real 
time multi-tasking software analysis modeling.   

•  Instead of a single state machine, the stateChart 
can support multiple state machines, 
communication, and synchronization among these 
machines.  27 
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FSM v.s. State chart 

•Similar to FSM, the State Chart consists of states 
(including initial and final states), signals(events), 
transitions with triggers( event and data 
conditions), and actions (e.g., emitting signals).  

•In addition, it supports state hierarchy, i.e., nested  
states,  and various communication between two 
active states. 

•When the State Chart is used, we can assign a 
concurrent task (a concurrent state) for each 
important device control so that we can easily 
divide the whole software design into multiple 
partitions. 
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State chart simulation development 
tools 

• There are many statechart  simulation development 
tools available in market, StateMate, SpeedChart, 
StateFlow, BetterState, VisualVHDL, StateVision, and 
LabView are well known among these tools.  

• Some other StateChart development tools such as 
Rational Rose, Rhapsody can even convert the 
stateChart into actual code in C or VHDL. 

• In summary, the State chart provides a formal model 
for reactive dynamic behavior of embedded system 
especially for the concurrency behavior.   

• It is a good fit for large system modeling and design 
because it has eliminated the state explosion problem. 
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    Time Requirement Analysis  
for Real-Time Systems 

• Most embedded software are real-time systems, some waiting 
tasks are guaranteed to be given the CPU when an external event 
occurs.  

• Real time systems are designed to control devices such as 
industrial robots, which require timely processing.  

• Such system must meet timing requirements regardless hard real-
time embedded system or soft real-time embedded systems.  

• Almost all embedded software are multitask oriented in which 
multiple tasks, also known as process, share common processing 
resources such as a CPU.  
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timing criticality 



Contd. 

• With a single CPU, only one task is said to be running at any 
point in time, meaning that the CPU is actively executing 
instructions for that task while all others are waiting. 

• The act of reassigning a CPU from one task to another one is 
called a context switch.  

• Running multiple tasks concurrently can make maximum 
use of CPU time, reduce the CPU idle time to a minimum 
degree, and the urgent requests can be handled 
immediately.   

• A task represents an activity such as a process or a thread.  

• Threads are lightweight processes which share entire 
memory space.  
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Contd. 

• Thus, threads are basically processes that run in the same 
memory context.  

• Context switch between threads does not involve changing 
the memory context. 

• A task can even have multiple threads. As a notation, the 
term  task will represent both process and thread.   

• The multi-tasking design and implementation can separate 
the design concerns, divide and conquer the problem 
domains easier but interaction and resource sharing 
between tasks still bring many design and implementation 
complexities. 

• Each task must keep tracks on its own concern and has its 
own state including its own status, CPU register status, 
program count, its own memory space and stack, so that 
CPU can switch back and forth between these 
processes/tasks. 
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What is the timing requirement? 

• When an event request occurs in a reactive embedded 
system the target task must respond the event within a 
period time.  

• The Worst-Case Execution Time (WCET) of a task tells the 
maximum length of time the task could take to execute. 

 A task often shows a certain variation of execution times 
depending on the input data or behavior of the 
environment.  

 The actual response time may be shorter that the WCET.  
 Knowing worst-case execution times is of prime importance 

for the timing analysis of hard real time system.  
 There is also a deadline for each task to complete for either 

periodic events or aperiodic events.  
 Understanding life cycle of a task is very important for the 

time requirement analysis. 
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Example multi-tasking states 

• An example is the multi-tasking 8051 RTX-51.  

• It recognizes four task states; a process is always in one of 
these states at any time: 

 

1. READY      Tasks which are READY to run CPU are in this 
state. 

2. RUNNING   (ACTIVE) Task which is currently being 
executed by CPU processor. Only one task can be in this 
state at any time. 

3. BLOCKED   (WAITING) Task waits for an event or resource. 

4. SLEEPING   Tasks before started or after terminated are in 
this state. 
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RTX51 Tasks Status Diagram 

Ready
Running

Blocked

   Sleep

create

Dispatch highest priority

Or longest in the queue 

with same priority

terminated

Preempted to reay queue

Event for task occurs, which has 

lower priority than running one,  enters 

ready queue

I/O or event wait 

Event for task occurs, which has higher 

priority than running one,  preempts it
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Tasks Status Diagram 

• In the life cycle of a task in a multitasking environment, 
a task moves from one state to another state and 
compete CPU with other state.  

• The task selection for CPU (running state) is 
determined by a scheduler (also called dispatcher). 

1. The task with the highest priority of all tasks in the 
READY state is executed. 

2. If several tasks of the same priority are in the READY 
state, the task that has been ready the longest will 
be the next to execute. 

3. Task switch is only executed if the first rule would 
have been otherwise violated (exception: round-
robin scheduling).  

 
 

36 

E
m

be
d
d
ed

 S
ys

. 
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7 

  ©
 A

hm
ad

 E
l-B

an
na

 



Non-Preemptive Scheduling 

 Non-preemptive multitasking is a simple task scheduling for 
periodic time requirement system.  

 Such systems are either statically scheduled which most 
often are periodic systems, or in form of cooperative 
multitasking, in which case the tasks can self-interrupt and 
voluntarily give control to other tasks.  

 Cooperative multitasking is a type of multitasking in which 
the process currently controlling the CPU must offer control 
to other processes. 

 It is called “cooperative” because all tasks must work 
cooperatively.  

 In the non-preemptive scheduling, once a task started it will 
hold CPU until it completes or it may give up CPU by itself 
due to the lack of resources.  
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 Contd. 

 It does not need any context switch from a running task to 
another task.  

 The context switch takes a lot of time to save its current 
status including its stack and Program Count(PC)  address 
so that it can resume its task after it comes back to run the 
CPU. 

• A simplified modeling for a non-preemptive scheduling can 
be a cyclic scheduling that the tasks can be scheduled in a 
fixed static table off-line.  

• Assume that the embedded software consists a set of tasks 
and all of them have their fixed period. A periodic events 
can be estimated by their worst case interval gap between 
two consecutive task events. 

• Also, assume that all tasks are independent and WCET are 
known in advance so that the deadline is at the end of 
WCET.   
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 Contd. 

• You can also schedule the higher priority task before 
the tasks with lower priority. 

• The advantage of such cyclic scheduling: simple, zero 
overhead of context switch between process/task;  

• The disadvantage:  inflexibility. 

• If there are n tasks and the WCET of ith task is ci,  then 

the period of any task Ti must satisfy 

  

Ti  >=  ∑ cj (j = 1,2, …, n)  

 

• Otherwise some task will miss its deadline. 
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 software analyst and design should make each 
task as shorter as possible.  

 For these long tasks you may need to break it into 
many small pieces. 

 Here is a cyclic schedule example: 

Task Execution Time period 

Task1 20ms 50ms 

Task2 25ms 100ms 

20ms(T1) 30ms 20ms(T1) 25ms(T2) 5ms 

You can find that the period of T1 (50ms) > c1(20ms) + 
c2(25ms). 

50 100 
40 
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non-preemptive cyclic scheduling 
implementation 

 The template for the non-preemptive cyclic scheduling 
implementation. Assume there is a timer set on the 
period of 50 ms.  

while(1) 

{  

   Wait_for_50ms_timer_interrupt; 

   do task1; 

   Wait_for_50ms_timer_interrupt; 

   do task1; 

   do task2; 

} 
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Round-robin (RR) 

• Round-robin (RR) is one of the simplest time shared 
cooperative scheduling algorithms which assigns 
prefixed time slices to each process in order, handling 
all processes without priority(equal priority).  

• The task with CPU will either voluntarily yield the CPU 
to other task or be preempted through an internal 
timer interrupt.  

• Round-robin scheduling is both simple and easy to 
implement. 

• Many RTOS support RR scheduling. 
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Example of RR Implementation 

• Round robin scheduling Example in RTX51 RTOS 

• Two counting tasks: job0 and job1 

 

 

 

 

 

 

 

 

 

 

RTOS will switch CPU between task0 and task1 after task0 starts. 
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Pre-emptive Scheduling 

• In reality, a reactive embedded system must respond 
and handle external or internal events with different 
urgent extents. 

•  Some events have hard time constraints while the 
others may only have soft time constraints.  

• In other word, some task should be assigned higher 
priority than other tasks. 

•  An important design aspect of real time software 
systems is priority-based scheduling to ensure that the 
critical timing constructs such as deadline and 
response time must be met. 
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Priority-based scheduling 

• In priority-based scheduling, algorithms assign priority 
to each process in the multi-tasking real time systems.  

• CPU always goes to the highest priority process which 
is ready.  

• Popular fixed priority scheduling algorithms are:  
• Static timing scheduling  

• Round-robin scheduling  

• Rate Monotonic Scheduling(RMS) and its deadline based 
analysis: Rate Monotonic Analysis(RMA)  

• The popular dynamic priority-based scheduling is 
• Earliest Deadline First(EDF) scheduling assigns priorities at 

runtime, based on upcoming execution deadline where the 
priority is time varying rather than fixed. 
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RMS 

• Rate Monotonic Scheduling (RMS) is a priority based 
static scheduling for preemptive real time systems.  

• It is a popular static scheduling algorithm for such 
system where the round-robin scheduling analysis 
failed to meet task deadlines all the time.  

• It can guarantee the time requirement and maximize 
the schedulability as long as the CPU utilization is 
below 0.7.  

• It has been proved that the RMA is optimal among all 
static priority scheduling algorithms 
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Contd. 

• The rate-monotonic analysis Static priorities assigns 
shorter period/deadline process higher priority at 
design time assumed that processes have the 
following properties: 
• No resource sharing (processes do not share 

resources, e.g., a hardware resource, a queue, or any 
kind of semaphore blocking or busy wait non-
blocking) 

• Deterministic deadlines are exactly equal to periods 

• Context switch times are free and have no impact on 
the model 

• Once the priority of a task is assigned they will remain 
constant for the life time of the task. 
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RMS scenario 
• Scenario with two tasks. 

 

48 

Task Execution time Period(Deadline) Priority Utilization 

Task1 20ms 50ms 2(high) 40% 

Task2 45ms 100ms 1(low) 45% 

T1(20) T2(30) T1(20) T2(15) (15) T1(20) T2(30) Continue the same pattern 

150 50 100 

• The task1 must meet its deadline of 50, 100, 150, … and task 2 
must meet its deadline at 100, 200, 300, … . Because task1 has 
shorter period therefore is assigned higher priority that once it 
starts it will not be preempted until it competes.  

    The static schedule is shown as follows. 

T2(45) T1(5) T2(45) 

50 

• At time 50, task 2 is preempted by task1 because task1 is ready every 50ms 
and task1 has higher priority than the task 2.  

• This schedule guarantees all tasks meet their deadline. 
• If  task 2 gets higher priority over task1 then task 1 will miss its deadline at 

time 50 as follows. 
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Contd… 

• An  example of three tasks (processes) : 
 Task Execution time Period(Deadline) Priority Utilization 

Task1 4ms 10ms 3(high) 40% 

Task2 5ms 15ms 2(medium) 33% 

Task3 6ms 25ms 1(low) 24% 

Because    T(1) < T(2) < T(3) ( where T(i) is the period of task i ),  
Therefore P(1) > P(2) >P(3) (where P(i) is the priority of task i). 
Also notice that CPU utilization is  
4/10 + 5/15 + 6/25 = 0.40 + 0.33 + 0.24 = 0.97 < 100%. 
 
Let’s schedule these three tasks according to their priorities: 
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Contd… 

• What happens?  
• At the time of 25ms the task3 miss its deadline by 3ms.  
• Why? It is due to that  total utilization rate is 94% which is 

way beyond schedulable bound 70%.  
• One major limitation of fixed-priority scheduling is that it is 

not always possible to fully utilize the CPU.  
• It has a worst-case schedulable bound of: 

Un = ∑ Ci/Ti (i=1..n) <= n * (21/n - 1)  
     where n is the number of tasks in a system. 
•  As the number of tasks increases, the schedulable bound 

decreases, eventually approaching its limit of ln 2 = 69.3%. 
• Liu & Layland (1973) proved that for a set of n periodic tasks 

with unique periods,  
a feasible schedule that will meet deadlines exists if the CPU 
utilization is < Un .  
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Contd. 

• Let’s reduce the utilization rates as follows: 

Task Execution time Period(Deadline) Priority Utilization 

Task1 3ms 10ms 3(high) 20% 

Task2 4ms 15ms 2(medium) 20% 

Task3 4ms 25ms 1(low) 16% 

    The total CPU utilization is 56%. let’s re-schedule it. 

#1(3) #2(4) #3(3) #1(3) #3(1) #2(4) #1(3) #3(4) 

The same pattern will continue after time 30. 

 10                            15                20               25                 30 
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Contd. 

• In general RMS case can meet all the deadlines if CPU 
utilization is 70%.  

• The other 30% of the CPU can be dedicated to lower-
priority non real-time tasks.  

• The context switch cost for the RMS is very high  
although its CPU utilization is not perfect. 

 

• In order to fully make use of CPU time and also to meet 
all deadlines is to use a dynamic priority scheduling 
algorithm. 
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Dynamic scheduling with EDF 

• The priority is fixed in the static priority-based scheduling 
but the  priority of a process can changes in the dynamic 
priority-based scheduling to increase the CPU utilization 
and to make all tasks meet their deadline.  

• The Earliest deadline First(EDF) assigns higher priority to 
these tasks that are closer to their deadline at run time.  

• The process closest to its deadline is assigned with the 
highest priority.  

• The EDF can be applied to scheduling for both periodic 
and aperiodic tasks if deadlines are known in advance.  

• The advantage of it is its CPU utilization but its 
disadvantages including high costs on context switches 
and no guarantees on all deadline requirements.  
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Contd. 

• EDF is not very practical in many cases due to its 
complexity and therefore is not as popular as RMS. 

• EDF must recalculates the priority of each process at 
every context switch time(preemption time). This is 
another overhead cost addition to the cost of context 
switches. 

• Let’s explore a multi-tasking case as follows: 
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Tasks Execution time(Ci) Deadline(period) Utilization 

Task1 4ms 10ms 40% 

Task2 4ms 15ms 27% 

Task3 5ms 25ms 20% 
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Contd… 
• The total CPU utilization = 87% 

 T1(4) T2(4) T3(2) T1(4) T3(1) T2(4) T3(1) T1(4) T3(1) T3(5) 

• Assume tasks t1, t2, t3 are ready at time 0. 
• The deadline of t2 are at the time of  10, 20, 30, 40,  …, the deadlines 

for t2 are at the time of 15, 30, 45,, and the deadlines for t3 are at the 
time of 25, 50, 75, …. 

• At time 0, t1 has the highest priority because its next deadline is 
shorter than the other two. 

• At time 4 context switch time, t1 is just finished and is not ready, t2 is 
closer to its next deadline than t3, t2 goes first.  

• At time 8, only t3 is available so that t3 gets its 2 units until time 10 
when the t1 is ready again. 

• At time 10, t1 gets back CPU and completes at time 14. 
• At time 14, only t3 is ready and t2 will be ready at time 15 therefore t3 

gets another 1 unit CPU time. 

0          4            8         10           14           15           19            20           24           25        30 
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Contd. 

56 

T1(4) T2(4) T3(2) T1(4) T3(1) T2(4) T3(1) T1(4) T3(1) T3(5) 

• At time 15, t2 must run CPU and completes at time 19. T3 gets another 
one unit CPU time and completes before its deadline of time 25. 

• At time 20, t1 gets CPU and run 4 unit time, t3 gets another one unit 
time to complete its execution time.  

• At time 25, neither t1 nor t2 is ready but t3 is ready for next round 
therefore t3 runs 5 unit time. 

• At the time 30, the cycle will start over again.  

 
• Compared to RMS you can see much more frequent context 

switches take place during the concurrent executions 
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QUIZ 57 
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Quiz (3 marks) 

1. What’s Power-on Reset? Mention the other Reset triggers. 

2. Figure is Pushing R9  in (a) then popping it directly in (b), 
Write the SP, R9 values in each step below. 
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• For more details, refer to: 

• Chapter 2 at Embedded Software Development with C, 
Springer 2009 by Kai Qian et al. 

• Chapter 9 at Introduction to Embedded Systems, Springer 2014 
by  Manuel Jiménez et al. 

 

• The lecture is available online at: 

• http://bu.edu.eg/staff/ahmad.elbanna-courses 

 

• For inquires, send to: 

• ahmad.elbanna@feng.bu.edu.eg 
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